V = 4578.7 (7) Å³

Mo $K\alpha$ radiation $\mu = 5.61 \text{ mm}^{-1}$

52250 measured reflections

3982 independent reflections 3026 reflections with $I > 2\sigma(I)$

T = 183 (2) K $0.26 \times 0.20 \times 0.15 \text{ mm}$

 $R_{\rm int} = 0.079$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

μ -1,2-Bis(diethylphosphino)ethane- $\kappa^2 P: P'$ -bis{[1.2-bis(diethylphosphino)ethane- $\kappa^2 P$, P']trichloridonitrosyltungsten(II)}

Nataša Avramović, Olivier Blacque,* Helmut W. Schmalle and Heinz Berke

Anorganisch-Chemisches Institut der Universität Zürich. Winterthurerstrasse 190. CH-8057 Zürich, Switzerland Correspondence e-mail: oblacque@aci.uzh.ch

Received 10 January 2008; accepted 11 January 2008

Key indicators: single-crystal X-ray study; T = 183 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.024; wR factor = 0.057; data-to-parameter ratio = 17.8

The title binuclear compound, $[W_2Cl_6(NO)_2(C_{10}H_{22}P_2)_3]$, contains two W atoms which are bridged by a bis(diethylphosphino)ethane (depe) ligand. The seven-coordinated tungsten(II) centres display distorted pentagonal-bipyramidal geometries with *trans* nitrosyl and chloride ligands. The title molecule lies on a crystallographic inversion centre. The ethane group of the non-bridging depe ligand is positionally disordered, with site-occupancy factors of 0.63 and 0.37. In the crystal structure, the binuclear molecules are linked by weak intermolecular $C-H\cdots O$ and $C-H\cdots Cl$ interactions. In addition, weak intramolecular $C-H\cdots Cl$ interactions are also present.

Related literature

For related literature, see: Avramović et al. (2008); Bencze & Kohàn (1982); Campbell et al. (1985); Carmona et al. (1989); Desiraju & Steiner (1999); Han & Coucouvanis (2002); Hunter & Legzdins (1984); Landau et al. (1999); Zeng et al. (1994).

Experimental

Crystal data

$W_2Cl_6(NO)_2(C_{10}H_{22}P_2)_3$]	
$M_r = 1259.10$	
Orthorhombic, Pbca	
a = 12.6406 (14) Å	
b = 17.6485 (14) Å	
c = 20.5243 (17) Å	

Data collection

Stoe IPDS diffractometer
Absorption correction: numerical
(Coppens et al., 1965)
$T_{\min} = 0.329, T_{\max} = 0.499$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	1 restraint
$wR(F^2) = 0.056$	H-atom parameters constrained
S = 0.84	$\Delta \rho_{\rm max} = 1.04 \text{ e } \text{\AA}^{-3}$
3982 reflections	$\Delta \rho_{\rm min} = -1.27 \text{ e } \text{\AA}^{-3}$
224 parameters	

Table 1

Selected geometric parameters (Å, °).

W1-P1	2.5598 (13)	W1-Cl2	2.4703 (11)
W1-P2	2.5675 (14)	W1-Cl3	2.4905 (11)
W1-P3	2.6051 (12)	W1-N1	1.783 (4)
W1-Cl1	2.4750 (12)		
N1-W1-Cl1	98.06 (14)	Cl1-W1-P2	71.30 (5)
N1 - W1 - Cl2	99.08 (13)	Cl1-W1-P3	73.09 (4)
N1 - W1 - Cl3	177.72 (13)	Cl2-W1-P1	70.77 (4)
Cl1-W1-Cl2	141.66 (4)	Cl2-W1-P3	73.54 (4)
Cl2-W1-Cl3	82.27 (4)	Cl3-W1-P1	90.21 (4)
Cl1-W1-Cl3	81.87 (4)	P1-W1-P2	72.90 (5)

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Table 2		
Hydrogen-bond g	geometry (Å,	°).

<i>D</i> -H··· <i>A</i>	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5B\cdots Cl2$	0.97	2.81	3.196 (7)	105
$C11 - H11A \cdots Cl1$	0.97	2.71	3.129 (7)	107
$C13-H13B\cdots Cl1$	0.97	2.75	3.132 (5)	104
$C14-H14A\cdots Cl2$	0.97	2.76	3.150 (5)	105
$C13-H13A\cdots Cl1^{i}$	0.97	2.80	3.425 (5)	123
C10−H10A···Cl3 ⁱⁱ	0.96	2.81	3.726 (7)	161
$C2-H2A\cdots O1^{iii}$	0.97	2.65	3.579 (10)	161
$C4-H4B\cdotsO1^{iii}$	0.97	2.56	3.470 (15)	156
Symmetry codes: ($x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.	(i) $-x+2$,	-y + 1, -z + 1	; (ii) $x - \frac{1}{2}, y$	$-z + \frac{1}{2};$ (iii)

Data collection: IPDS Software (Stoe & Cie, 1999); cell refinement: IPDS Software; data reduction: X-RED (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), SHELXL97 and PLATON (Spek, 2003).

The authors thank the University of Zürich and the Swiss National Science Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2041).

References

- Avramović, N., Blacque, O., Schmalle, H. W. & Berke, H. (2008). Acta Cryst. E64, m245.
- Bencze, L. & Kohàn, J. (1982). Inorg. Chim. Acta, 65, L17-L19.
- Campbell, F. L. III, Cotton, F. A. & Powell, G. L. (1985). Inorg. Chem. 24, 4384–4389.
- Carmona, E., Gutiérrez-Puebla, E., Monge, A., Pérez, P. J. & Sanchez, L. J. (1989). Inorg. Chem. 28, 2120–2127.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035– 1038.

- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond*, pp. 215–221. Oxford University Press.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Han, J. & Coucouvanis, D. (2002). Inorg. Chem. 41, 2738-2746.
- Hunter, A. D. & Legzdins, P. (1984). Inorg. Chem. 23, 4198-4204.
- Landau, S. E., Morris, R. H. & Lough, A. J. (1999). *Inorg. Chem.* 38, 6060–6068.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Stoe & Cie (1999). *IPDS Software and X-RED*. Stoe & Cie, Darmstadt, Germany.
- Zeng, D., Hampden-Smith, M. J. & Larson, E. M. (1994). Acta Cryst. C50, 1000-1002.

supplementary materials

Acta Cryst. (2008). E64, m367-m368 [doi:10.1107/S1600536808001141]

μ -1,2-Bis(diethylphosphino)ethane- $\kappa^2 P$:P'-bis{[1,2-bis(diethylphosphino)ethane- $\kappa^2 P$,P']trichloridonitrosyltungsten(II)}

N. Avramovic, O. Blacque, H. W. Schmalle and H. Berke

Comment

The mononuclear compound $[W(Cl)_2(NO)(dmpe)_2](Cl)$ was previously obtained by the reaction of $[W(Cl)_3(NO)(NCCH_3)_2]$ with 2.5 equivalents of dmpe [1,2-bis(dimethylphosphino)ethane] at room temperature in tetrahydrofuran (Avramović *et al.*, 2008). The synthesis of the analogous compound $[W(Cl)_2(NO)(depe)_2](Cl)$ was also attempted by the same procedure using the bidentate ligand depe [1,2-bis(diethylphosphino)ethane]. Presumably because of steric factors, only the binuclear compound $[W(Cl)_3(NO)(depe)]_2(\mu$ -depe) was formed instead of the expected mononuclear compound.

The title compound consists of two metal units bridged by a depe ligand (see: Campbell *et al.*, 1985; Han & Coucouvanis, 2002; Zeng *et al.*, 1994; Landau *et al.*, 1999). Both tungsten centers are crystallographically equivalent since the molecule lies on a crystallographic inversion center (Fig. 1). The geometry at tungsten(II) is very similar to that in $[W(Cl)_2(NO)(dmpe)_2](Cl)$ with a distorted pentagonal bipyramidal coordination. A second chloride ligand takes the place of one phosphorus in $[W(Cl)_2(NO)(dmpe)_2](Cl)$ to complete the equatorial plane of the polyhedron (P1, P2, P3, Cl1 and Cl2). The five equatorial bond angles, in the range 70.8 - 73.5°, are close to the theoretically average angle of 72°. It is worth noting that the five equatorial atoms are not completely coplanar. Atoms Cl1 and Cl2 deviate from the P1—P2—P3 plane, toward the third chloride atom Cl3, by 0.303 (2) and 0.543 (2) Å, respectively. Nevertheless, this geometry is clearly different to that observed for the related compound Mo(Cl)₃(NO)(PMe₃)₃, for which the coordination polyhedron is described as a capped-octahedron (Carmona *et al.*, 1989).

All the chloride ligands are engaged in hydrogen bonding, with atoms Cl1 and Cl2 involved in ten intramolecular interactions with CH_2 hydrogen atoms within the dimer, and atom Cl3 (*trans* to the nitrosyl group) in one weak intermolecular interaction with the methyl hydrogen atom H10A (Fig. 2, Table 1). The C10···Cl3 donor-acceptor distance of 3.726 (7) Å represents a rather weak interaction of this type (Desiraju & Steiner, 1999). In addition, the binuclear complexes are linked by two weak intermolecular C—H···O hydrogen bonds between the nitrosyl oxygen atom and the hydrogen atoms of the disordered ethane bridge.

Experimental

 $[W(Cl)_3(NO)(depe)]_2(\mu$ -depe) was prepared from the complex $[W(Cl)_3(NO)(CH_3CN)_2]$. The latter is easily synthesized by the reaction of $W(Cl)_6$ with NO gas in dichloromethane in the presence of acetonitrile at room temperature, according to a literature procedure (Bencze & Kohàn, 1982; Hunter & Legzdins, 1984). 5.00 g (12.6 mmol) of WCl₆ and 1.32 ml (25.2 mmol) of acetonitrile were dissolved in 180 ml of dichloromethane in a 500 ml three-necked flask. Nitric oxide was passed through the solution, which was stirred at room temperature until the dark purple colour of the solution turned to the light green precipitate after *ca* 1 h. The volume of the final mixture was reduced to 50 ml *in vacuo* and the mixture was then cooled to 0°C for 15 min. The precipitate was isolated by filtration and the collected solid was then washed first with cold dichloromethane (2 x 10 ml at 0°C) and then with hexane (4 x 20 ml) at room temperature. Final drying of the solid under vacuum for 18 h afforded the yellow-green [W(Cl)₃(NO)(CH₃CN)₂] compound. 0.200 g (0.497 mmol) of [W(Cl)₃(NO)(NCCH₃)₂] was dissolved in 20 ml of tetrahydrofurane in a Young tap Schlenk and the depe ligand (0.29 ml, 1.243 mmol) was syringed into the solution. The solution was stirred at room temperature for 24 h, then filtered and the solvent removed under vacuum. The resulting solid was crystallized from dichloromethane at room temperature and gave light-green crystals of the title compound.

Yield: 0.266 g (85%).

IR (cm⁻¹, CH₂Cl₂): 1520 (NO).

¹H NMR (200.0 MHz, CD₂Cl₂, 25°C): 2.69 (m, 4H, P(CH₂)₂P); 2.39 (m, 8H, PCH₂CH₃); 2.19 (16*H*, PCH₂CH₃), 2.06 (m, 8H, P(CH₂)₂P), 1.25 (m, 24H, PCH₂CH₃), 1.19 (m, 12*H*, PCH₂CH₃).

³¹P{¹H} NMR (80.9 MHz, CD₂Cl₂, 25°C): 46.8 (m, P(CH₂)₂P), 45.8 (m, P(CH₂)₂P) and 21.4 (m, P(CH₂)₂P), ²J_{PN} = 15.6 Hz; ¹J_{PW} = 203 Hz.

¹³C{¹H} NMR (50.3 MHz, CD₂Cl₂, 25°C): 8.8 (m, PCH₂CH₃), 9.2 (s, PCH₂CH₃), 15.7 (m, PCH₂CH₃), 18.5 (m, PCH₂CH₃), 20.0 (m, P(CH₂)₂P).

Anal. Calcd for C₃₀H₇₂Cl₆N₂O₂P₆W₂: C, 28.60; H, 5.72; N, 2.22. Found: C, 28.87; H, 6.01; N, 1.98.

Refinement

The H atom were included in calculated positions and treated as riding atoms: C—H distances 0.96–0.99 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The ethyl group of one depe ligand is positionally disordered; refined site occupancy factors 0.631 (8):0.369 (8).

Figures

Fig. 1. View of the molecular structure of the title compound, showing the atom-labeling scheme and displacement ellipsoids drawn at the 30% probability level. The disordered atoms, C3 and C4, and the hydrogen atoms have been omitted for clarity. Symmetry transformation: -x + 2, -y + 1, -z + 1.

Fig. 2. A view, along the *b* axis, of the crystal structure of the title compound. The intermolecular C—H···Cl and C—H···O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

μ -1,2-Bis(diethylphosphino)ethane- $\kappa^2 P:P'$ -bis{[1,2-bis(diethylphosphino)ethane- $\kappa^2 P,P'$]trichloridonitrosyltungsten(II)}

 $F_{000} = 2488$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.8 - 30.4^{\circ}$

 $\mu = 5.61 \text{ mm}^{-1}$

T = 183 (2) K

Block, yellow

 $0.26 \times 0.20 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.827 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 7997 reflections

Crystal data	
--------------	--

 $[W_{2}Cl_{6}(NO)_{2}(C_{10}H_{22}P_{2})_{3}]$ $M_{r} = 1259.10$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 12.6406 (14) Å b = 17.6485 (14) Å c = 20.5243 (17) Å V = 4578.7 (7) Å³ Z = 4

Data collection

Stoe IPDS diffractometer	3982 independent reflections
Radiation source: fine-focus sealed tube	3026 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.079$
T = 183(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ oscillation scan	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: numerical (Coppens et al., 1965)	$h = -15 \rightarrow 15$
$T_{\min} = 0.329, \ T_{\max} = 0.499$	$k = -20 \longrightarrow 20$
52250 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring Least-squares matrix: full sites $R[F^2 > 2\sigma(F^2)] = 0.024$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0357P)^2]$ $wR(F^2) = 0.056$ where $P = (F_0^2 + 2F_c^2)/3$ S = 0.85 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 1.04 \text{ e} \text{ Å}^{-3}$ 3982 reflections $\Delta \rho_{min} = -1.27 \text{ e } \text{\AA}^{-3}$ 224 parameters 1 restraint Extinction correction: none Primary atom site location: structure-invariant direct

Primary atom site location: structure-invariant methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2^2 . The threshold expression of $F^2^2 > \sigma(F^2^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
W1	0.826046 (13)	0.388044 (11)	0.379416 (7)	0.01301 (6)	
C11	0.77419 (9)	0.50925 (7)	0.43099 (5)	0.0229 (3)	
Cl2	0.95733 (9)	0.33344 (8)	0.30362 (5)	0.0232 (3)	
C13	0.76818 (10)	0.45607 (8)	0.27925 (5)	0.0261 (3)	
P1	0.75410 (11)	0.26356 (8)	0.33323 (6)	0.0221 (3)	
P2	0.62919 (11)	0.38137 (9)	0.40971 (8)	0.0319 (3)	
P3	0.99811 (9)	0.46776 (7)	0.39288 (5)	0.0141 (3)	
N1	0.8622 (3)	0.3381 (2)	0.45154 (17)	0.0180 (9)	
01	0.8860 (3)	0.3047 (2)	0.50083 (16)	0.0282 (9)	
C1	0.6454 (7)	0.2268 (5)	0.3833 (5)	0.0341 (16)	0.631 (8)
H1A	0.6141	0.1827	0.3627	0.041*	0.631 (8)
H1B	0.6716	0.2120	0.4259	0.041*	0.631 (8)
C2	0.5642 (6)	0.2887 (5)	0.3901 (5)	0.0341 (16)	0.631 (8)
H2A	0.5147	0.2756	0.4244	0.041*	0.631 (8)
H2B	0.5248	0.2934	0.3497	0.041*	0.631 (8)
C3	0.6069 (13)	0.2531 (10)	0.3577 (7)	0.0341 (16)	0.369 (8)
H3A	0.5619	0.2840	0.3301	0.041*	0.369 (8)
H3B	0.5842	0.2007	0.3547	0.041*	0.369 (8)
C4	0.6042 (13)	0.2805 (9)	0.4274 (7)	0.0341 (16)	0.369 (8)
H4A	0.6597	0.2580	0.4538	0.041*	0.369 (8)
H4B	0.5360	0.2723	0.4478	0.041*	0.369 (8)
C5	0.8399 (6)	0.1786 (4)	0.3396 (3)	0.0505 (18)	
H5A	0.7963	0.1345	0.3313	0.061*	
H5B	0.8917	0.1813	0.3048	0.061*	
C6	0.8966 (6)	0.1655 (4)	0.4000 (4)	0.072 (3)	
H6A	0.9530	0.2016	0.4040	0.107*	
H6B	0.9255	0.1152	0.3999	0.107*	
H6C	0.8489	0.1709	0.4361	0.107*	
C7	0.7194 (6)	0.2647 (3)	0.2484 (3)	0.0408 (15)	
H7A	0.6749	0.3085	0.2405	0.049*	
H7B	0.7837	0.2714	0.2232	0.049*	
C8	0.6617 (5)	0.1942 (4)	0.2226 (3)	0.0484 (18)	
H8A	0.7019	0.1497	0.2332	0.073*	

H8B	0.6542	0.1980	0.1762	0.073*
H8C	0.5930	0.1909	0.2423	0.073*
С9	0.5410 (4)	0.4353 (5)	0.3574 (3)	0.051 (2)
H9A	0.5584	0.4886	0.3613	0.062*
H9B	0.5535	0.4205	0.3126	0.062*
C10	0.4233 (5)	0.4248 (7)	0.3728 (3)	0.099 (4)
H10A	0.3817	0.4455	0.3380	0.148*
H10B	0.4065	0.4504	0.4127	0.148*
H10C	0.4080	0.3718	0.3773	0.148*
C11	0.5917 (5)	0.4121 (4)	0.4913 (3)	0.0462 (19)
H11A	0.5940	0.4670	0.4927	0.055*
H11B	0.5192	0.3968	0.4992	0.055*
C12	0.6603 (6)	0.3814 (6)	0.5455 (3)	0.082 (3)
H12A	0.6658	0.3273	0.5415	0.123*
H12B	0.6291	0.3938	0.5868	0.123*
H12C	0.7295	0.4035	0.5428	0.123*
C13	1.0135 (4)	0.5223 (3)	0.46896 (19)	0.0157 (10)
H13A	1.0860	0.5398	0.4720	0.019*
H13B	0.9682	0.5666	0.4668	0.019*
C14	1.1275 (4)	0.4204 (3)	0.3871 (2)	0.0207 (10)
H14A	1.1397	0.4068	0.3419	0.025*
H14B	1.1818	0.4565	0.3994	0.025*
C15	1.1407 (4)	0.3499 (3)	0.4285 (3)	0.0306 (13)
H15A	1.1336	0.3630	0.4737	0.046*
H15B	1.2094	0.3285	0.4211	0.046*
H15C	1.0874	0.3135	0.4170	0.046*
C16	1.0053 (4)	0.5396 (3)	0.3298 (2)	0.0239 (12)
H16A	1.0112	0.5143	0.2880	0.029*
H16B	0.9390	0.5674	0.3297	0.029*
C17	1.0947 (4)	0.5963 (3)	0.3352 (3)	0.0340 (14)
H17A	1.0875	0.6246	0.3749	0.051*
H17B	1.0923	0.6305	0.2988	0.051*
H17C	1.1612	0.5700	0.3352	0.051*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
W1	0.01297 (9)	0.01534 (10)	0.01072 (9)	0.00073 (8)	0.00014 (7)	0.00121 (8)
Cl1	0.0221 (6)	0.0214 (7)	0.0251 (6)	0.0079 (5)	-0.0026 (5)	-0.0062 (5)
Cl2	0.0198 (6)	0.0291 (7)	0.0206 (6)	0.0006 (5)	0.0059 (5)	-0.0074 (5)
Cl3	0.0311 (7)	0.0298 (8)	0.0174 (5)	0.0003 (6)	-0.0063 (5)	0.0073 (5)
P1	0.0230 (7)	0.0242 (8)	0.0190 (6)	-0.0073 (6)	0.0008 (5)	-0.0066 (5)
P2	0.0183 (6)	0.0265 (8)	0.0510 (9)	-0.0004 (7)	0.0133 (6)	-0.0013 (7)
P3	0.0145 (6)	0.0166 (6)	0.0113 (5)	-0.0011 (5)	0.0025 (4)	0.0009 (4)
N1	0.0156 (19)	0.025 (2)	0.0137 (18)	-0.0019 (18)	-0.0001 (15)	0.0010 (18)
O1	0.033 (2)	0.028 (2)	0.0232 (18)	0.0046 (17)	-0.0024 (16)	0.0112 (16)
C1	0.022 (4)	0.026 (4)	0.055 (5)	-0.006 (3)	0.011 (3)	0.000 (3)
C2	0.022 (4)	0.026 (4)	0.055 (5)	-0.006 (3)	0.011 (3)	0.000 (3)

supplementary materials

C3	0.022 (4)	0.026 (4)	0.055 (5)	-0.006 (3)	0.011 (3)	0.000 (3)
C4	0.022 (4)	0.026 (4)	0.055 (5)	-0.006 (3)	0.011 (3)	0.000 (3)
C5	0.073 (5)	0.026 (4)	0.052 (4)	-0.012 (3)	-0.027 (4)	0.003 (3)
C6	0.068 (5)	0.020 (4)	0.127 (7)	0.004 (4)	-0.052 (5)	0.004 (4)
C7	0.065 (4)	0.026 (3)	0.032 (3)	-0.002 (3)	-0.029 (3)	-0.005 (3)
C8	0.063 (4)	0.035 (4)	0.047 (3)	0.010 (3)	-0.036 (3)	-0.019 (3)
C9	0.023 (3)	0.089 (6)	0.042 (3)	0.013 (3)	-0.013 (3)	-0.030 (4)
C10	0.015 (3)	0.233 (13)	0.049 (4)	0.007 (5)	-0.004 (3)	-0.047 (6)
C11	0.026 (3)	0.076 (6)	0.037 (3)	0.017 (3)	0.017 (3)	0.019 (3)
C12	0.045 (4)	0.143 (9)	0.058 (4)	0.040 (5)	0.025 (4)	0.062 (5)
C13	0.019 (2)	0.017 (3)	0.011 (2)	-0.006 (2)	0.0019 (18)	0.0006 (19)
C14	0.016 (2)	0.022 (3)	0.024 (2)	0.002 (2)	0.004 (2)	-0.002 (2)
C15	0.028 (3)	0.030 (3)	0.034 (3)	0.013 (2)	-0.001 (2)	0.000 (3)
C16	0.032 (3)	0.024 (3)	0.017 (2)	-0.004 (2)	0.004 (2)	0.006 (2)
C17	0.034 (3)	0.032 (4)	0.036 (3)	-0.008 (3)	0.003 (2)	0.017 (3)

Geometric parameters (Å, °)

W1—P1	2.5598 (13)	С6—Н6С	0.9600
W1—P2	2.5675 (14)	С7—С8	1.536 (8)
W1—P3	2.6051 (12)	С7—Н7А	0.9700
W1-Cl1	2.4750 (12)	С7—Н7В	0.9700
W1-Cl2	2.4703 (11)	C8—H8A	0.9600
W1—Cl3	2.4905 (11)	C8—H8B	0.9600
W1-N1	1.783 (4)	С8—Н8С	0.9600
P1—C7	1.796 (5)	C9—C10	1.531 (8)
P1	1.834 (8)	С9—Н9А	0.9700
P1—C5	1.855 (7)	С9—Н9В	0.9700
P1—C3	1.936 (15)	C10—H10A	0.9600
Р2—С9	1.817 (7)	C10—H10B	0.9600
P2-C11	1.822 (6)	C10—H10C	0.9600
P2C4	1.844 (16)	C11—C12	1.512 (8)
P2-C2	1.874 (9)	C11—H11A	0.9700
P3—C16	1.815 (5)	C11—H11B	0.9700
P3—C14	1.840 (5)	C12—H12A	0.9600
P3—C13	1.844 (4)	C12—H12B	0.9600
N1—01	1.208 (5)	C12—H12C	0.9600
C1—C2	1.506 (10)	C13—C13 ⁱ	1.535 (8)
C1—H1A	0.9700	C13—H13A	0.9700
C1—H1B	0.9700	C13—H13B	0.9700
C2—H2A	0.9700	C14—C15	1.516 (7)
C2—H2B	0.9700	C14—H14A	0.9700
C3—C4	1.511 (10)	C14—H14B	0.9700
С3—НЗА	0.9700	C15—H15A	0.9600
С3—Н3В	0.9700	C15—H15B	0.9600
C4—H4A	0.9700	C15—H15C	0.9600
C4—H4B	0.9700	C16—C17	1.514 (7)
C5—C6	1.450 (9)	C16—H16A	0.9700
С5—Н5А	0.9700	C16—H16B	0.9700

С5—Н5В	0.9700	C17—H17A	0.9600
С6—Н6А	0.9600	С17—Н17В	0.9600
С6—Н6В	0.9600	С17—Н17С	0.9600
N1—W1—Cl1	98.06 (14)	P1—C5—H5B	107.7
N1—W1—Cl2	99.08 (13)	H5A—C5—H5B	107.1
N1—W1—Cl3	177.72 (13)	С5—С6—Н6А	109.5
Cl1—W1—Cl2	141.66 (4)	С5—С6—Н6В	109.5
Cl2—W1—Cl3	82.27 (4)	H6A—C6—H6B	109.5
Cl1—W1—Cl3	81.87 (4)	С5—С6—Н6С	109.5
N1—W1—P1	88.51 (14)	Н6А—С6—Н6С	109.5
Cl1—W1—P1	143.71 (4)	H6B—C6—H6C	109.5
Cl1—W1—P2	71.30 (5)	C8—C7—P1	116.2 (4)
Cl1—W1—P3	73.09 (4)	С8—С7—Н7А	108.2
Cl2—W1—P1	70.77 (4)	Р1—С7—Н7А	108.2
Cl2—W1—P3	73.54 (4)	С8—С7—Н7В	108.2
Cl3—W1—P1	90.21 (4)	Р1—С7—Н7В	108.2
N1—W1—P2	91.41 (13)	H7A—C7—H7B	107.4
Cl2—W1—P2	141.78 (5)	С7—С8—Н8А	109.5
Cl3—W1—P2	86.41 (5)	С7—С8—Н8В	109.5
P1—W1—P2	72.90 (5)	H8A—C8—H8B	109.5
N1—W1—P3	88 00 (13)	C7—C8—H8C	109.5
Cl3—W1—P3	94 16 (4)	H8A - C8 - H8C	109.5
P1—W1—P3	143 07 (4)	H8B-C8-H8C	109.5
P2W1P3	143.92 (4)	C10-C9-P2	114 3 (6)
C7—P1—C1	111 4 (4)	C10—C9—H9A	108 7
C7 - P1 - C5	102.7(3)	Р2—С9—Н9А	108.7
C1 - P1 - C5	96 5 (4)	C10—C9—H9B	108.7
C7—P1—C3	91.0 (5)	P2	108.7
C5-P1-C3	117.8 (6)	H9A-C9-H9B	107.6
C7—P1—W1	115.9 (2)	C9—C10—H10A	109.5
C1 - P1 - W1	111.2 (3)	C9—C10—H10B	109.5
C5—P1—W1	117.3 (2)	H10A—C10—H10B	109.5
C3—P1—W1	109 1 (5)	C9-C10-H10C	109.5
C9 - P2 - C11	103.1 (3)	H10A - C10 - H10C	109.5
C9 - P2 - C4	121.1 (6)	H10B—C10—H10C	109.5
$C_{11} = P_{2} = C_{4}$	93 5 (5)	C_{12} C_{11} P_{2}	114 9 (5)
$C9 = P^2 = C^2$	93 5 (4)	C12—C11—H11A	108 5
$C_{11} = P_{2} = C_{2}^{2}$	110 1 (4)	P2-C11-H11A	108.5
C9_P2_W1	115 3 (2)	C12—C11—H11B	108.5
$C_{11} = P_{2} = W_{1}$	117.4(2)	P2H11B	108.5
C4 = P2 = W1	104.9(5)	H11A—C11—H11B	107.5
$C^2 = P^2 = W^1$	1144(3)	C11-C12-H12A	109.5
$C_{16} = P_{3} = C_{14}$	1031(2)	C11—C12—H12B	109.5
C16 - P3 - C13	103.1(2) 103.6(2)	H12A_C12_H12B	109.5
C14 - P3 - C13	101.4 (2)	C11_C12_H12C	109.5
C16—P3—W1	110.08(17)	H12A_C12_H12C	109.5
C14—P3—W1	119 35 (17)	H12B-C12-H12C	109.5
C12 D2 W1	117.24 (15)		114 4 (4)
U13-P3-W1	117.34 (15)	C13 ⁻ C13P3	114.4 (4)

supplementary materials

O1—N1—W1	179.3 (4)	C13 ⁱ —C13—H13A	108.7
C2—C1—P1	107.8 (7)	P3—C13—H13A	108.7
C2—C1—H1A	110.1	C13 ⁱ —C13—H13B	108.7
P1—C1—H1A	110.1	Р3—С13—Н13В	108.7
C2—C1—H1B	110.1	H13A—C13—H13B	107.6
P1—C1—H1B	110.1	C15—C14—P3	115.7 (3)
H1A—C1—H1B	108.5	C15—C14—H14A	108.3
C1—C2—P2	110.7 (6)	P3—C14—H14A	108.3
C1—C2—H2A	109.5	C15—C14—H14B	108.3
P2—C2—H2A	109.5	P3—C14—H14B	108.3
C1—C2—H2B	109.5	H14A—C14—H14B	107.4
P2—C2—H2B	109.5	C14—C15—H15A	109.5
H2A—C2—H2B	108.1	C14—C15—H15B	109.5
C4—C3—P1	103.7 (10)	H15A—C15—H15B	109.5
С4—С3—НЗА	111.0	C14—C15—H15C	109.5
Р1—С3—НЗА	111.0	H15A—C15—H15C	109.5
C4—C3—H3B	111.0	H15B—C15—H15C	109.5
Р1—С3—Н3В	111.0	C17—C16—P3	116.6 (4)
H3A—C3—H3B	109.0	C17—C16—H16A	108.2
C3—C4—P2	96.8 (11)	P3—C16—H16A	108.2
C3—C4—H4A	112.4	C17—C16—H16B	108.2
P2-C4-H4A	112.4	P3—C16—H16B	108.2
C3—C4—H4B	112.4	H16A—C16—H16B	107.3
P2—C4—H4B	112.4	C16—C17—H17A	109.5
H4A—C4—H4B	110.0	С16—С17—Н17В	109.5
C6—C5—P1	118.6 (5)	H17A—C17—H17B	109.5
С6—С5—Н5А	107.7	С16—С17—Н17С	109.5
P1—C5—H5A	107.7	H17A—C17—H17C	109.5
C6—C5—H5B	107.7	H17B—C17—H17C	109.5
N1-W1-P1-C7	-169 6 (3)	$Cl_2 Wl_2 P_3 Cl_4$	-36.06(18)
$Cl2_W1_P1_C7$	-694(3)	C12 = W1 = P3 = C14	163.07 (18)
$Cl1_W1_P1_C7$	88.8 (3)	C13 W1 P3 C14	-11674(18)
Cl3-Wl-Pl-C7	12.3(3)	P1-W1-P3-C14	-20.84(19)
P2-W1-P1-C7	98 5 (3)	P2-W1-P3-C14	153 66 (18)
P3W1P1C7	-84.9(3)	N1 - W1 - P3 - C13	-591(2)
N1 - W1 - P1 - C1	61 9 (4)	C12 - W1 - P3 - C13	-159.16(18)
Cl2-Wl-Pl-Cl	162 1 (4)	C12 = W1 = P3 = C13	39.97 (17)
Cl1-W1-P1-C1	-397(4)	$C_{13} W_{1} P_{3} C_{13}$	120 16 (18)
Cl3-Wl-Pl-Cl	-1162(4)	P1 - W1 - P3 - C13	-14394(18)
P2W1P1C1	-30.0(4)	$P2_W1_P3_C13$	30.6.(2)
P3W1P1C1	146.6 (4)	$C7_{P1}_{C1}_{C2}$	-77.2(8)
N1 - W1 - P1 - C5	-47.8(3)	$C_{2} = P_{1} - C_{1} - C_{2}$	1764(7)
$Cl_2 = W1 = P1 = C5$	52 4 (3)	$C_3 = P_1 = C_1 = C_2$	-366(10)
Cl1—W1—P1—C5	-149 4 (3)	$W_1 - P_1 - C_1 - C_2$	53 7 (8)
C13-W1-P1-C5	1341(3)	P1P2	-454(0)
P2W1P1C5	-1397(3)	$P_{1} = C_{1} = C_{2} = C_{1}$	140 7 (8)
P3W1P1C5	36.9 (3)	$C_{11} = P_{2} = C_{2} = C_{1}$	-113 0 (7)
N1_W1_P1_C3	89.5 (5)	$C_{4} P_{2} C_{2} C_{1}$	-55.6(10)
111 W1-11-03	07.0 (0)	-7 12 - 02 - 01	55.0 (10)

Cl2—W1—P1—C3	-170.3 (5)	W1—P2—C2—C1	20.8 (9)
Cl1—W1—P1—C3	-12.1 (5)	C7—P1—C3—C4	-158.7 (11)
Cl3—W1—P1—C3	-88.6 (5)	C1—P1—C3—C4	58.6 (11)
P2—W1—P1—C3	-2.4 (5)	C5—P1—C3—C4	96.3 (12)
P3—W1—P1—C3	174.2 (5)	W1—P1—C3—C4	-40.8 (13)
N1—W1—P2—C9	172.8 (3)	P1—C3—C4—P2	69.6 (11)
Cl2—W1—P2—C9	-80.6 (3)	C9—P2—C4—C3	58.9 (12)
Cl1—W1—P2—C9	74.7 (3)	C11—P2—C4—C3	166.5 (10)
Cl3—W1—P2—C9	-7.9 (3)	C2—P2—C4—C3	39.8 (8)
P1—W1—P2—C9	-99.2 (3)	W1—P2—C4—C3	-73.8 (11)
P3—W1—P2—C9	84.2 (3)	C7—P1—C5—C6	170.9 (6)
N1—W1—P2—C11	50.8 (3)	C1—P1—C5—C6	-75.4 (7)
Cl2—W1—P2—C11	157.5 (3)	C3—P1—C5—C6	-91.1 (8)
Cl1—W1—P2—C11	-47.2 (3)	W1—P1—C5—C6	42.5 (7)
Cl3—W1—P2—C11	-129.8 (3)	C1—P1—C7—C8	-43.2 (6)
P1—W1—P2—C11	138.8 (3)	C5—P1—C7—C8	59.1 (6)
P3—W1—P2—C11	-37.7 (3)	C3—P1—C7—C8	-59.7 (7)
N1—W1—P2—C4	-51.3 (5)	W1—P1—C7—C8	-171.6 (4)
Cl2—W1—P2—C4	55.3 (5)	C11—P2—C9—C10	-55.8 (6)
Cl1—W1—P2—C4	-149.4 (5)	C4—P2—C9—C10	46.6 (8)
Cl3—W1—P2—C4	128.0 (5)	C2—P2—C9—C10	55.7 (6)
P1—W1—P2—C4	36.7 (5)	W1—P2—C9—C10	174.8 (5)
P3—W1—P2—C4	-139.9 (5)	C9—P2—C11—C12	-174.5 (6)
N1—W1—P2—C2	-80.5 (4)	C4—P2—C11—C12	62.4 (8)
Cl2—W1—P2—C2	26.2 (4)	C2—P2—C11—C12	86.8 (7)
Cl1—W1—P2—C2	-178.5 (4)	W1—P2—C11—C12	-46.4 (7)
Cl3—W1—P2—C2	98.9 (4)	C16—P3—C13—C13 ⁱ	167.4 (5)
P1—W1—P2—C2	7.5 (4)	C14—P3—C13—C13 ⁱ	-85.9 (5)
P3—W1—P2—C2	-169.0 (4)	W1—P3—C13—C13 ⁱ	45.9 (5)
N1—W1—P3—C16	-177.1 (2)	C16—P3—C14—C15	-172.3 (4)
Cl2—W1—P3—C16	82.81 (18)	C13—P3—C14—C15	80.6 (4)
Cl1—W1—P3—C16	-78.06 (18)	W1—P3—C14—C15	-50.0 (4)
Cl3—W1—P3—C16	2.13 (18)	C14—P3—C16—C17	-58.1 (5)
P1—W1—P3—C16	98.03 (19)	C13—P3—C16—C17	47.3 (5)
P2—W1—P3—C16	-87.5 (2)	W1—P3—C16—C17	173.5 (4)
N1—W1—P3—C14	64.0 (2)		

Symmetry codes: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C5—H5B···Cl2	0.97	2.81	3.196 (7)	105
C11—H11A···Cl1	0.97	2.71	3.129 (7)	107
C13—H13B…Cl1	0.97	2.75	3.132 (5)	104
C14—H14A…Cl2	0.97	2.76	3.150 (5)	105
C13—H13A···Cl1 ⁱ	0.97	2.80	3.425 (5)	123
C10—H10A···Cl3 ⁱⁱ	0.96	2.81	3.726 (7)	161
C2—H2A···O1 ⁱⁱⁱ	0.97	2.65	3.579 (10)	161

C4—H4B···O1ⁱⁱⁱ 0.97 2.56 3.470 (15) 156 Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1/2, y, -z+1/2; (iii) x-1/2, -y+1/2, -z+1.

Fig. 1

Fig. 2